DOI: 10.1002/qua.25598

FULL PAPER

Single- and double-electron reductions of CO₂ by using superalkalis: An ab initio study

Ambrish Kumar Srivastava 💿

P.G. Department of Physics, Veer Kunwar Singh University, Ara- 802301, Bihar, India

Correspondence

Ambrish Kumar Srivastava, P.G. Department of Physics, Veer Kunwar Singh University, Ara- 802301, Bihar, India. Email: ambrishphysics@gmail.com

Abstract

 CO_2 , a major contributor to global warming, can be balanced by converting it into fuels. The reduction of CO_2 has been difficult due to its extremely high stability. Recently, single-electron reduction of CO_2 by superalkalis has been proposed using quantum chemical methods. Herein, we report a systematic study on the single-reduction of CO_2 by using typical superalkalis. Superalkalis are hypervalent species possessing lower ionization energies than alkali atoms. We have studied the interaction of CO_2 with FLi₂, OLi₃, and NLi₄ superalkalis using ab initio MP2 calculations. We notice that this interaction leads to stable superalkalic. This clearly reveals that the CO_2 can successfully be reduced to the CO_2^- anion. It has been also noticed that the size of superalkalis plays a crucial in the single-electron reduction of CO_2 decreases monotonically with the increase in the size of superalkali. We have also proposed that CO_2 can be further reduced to CO_2^{2--} in case of the anionic complex such as (FLi₂—CO₂)⁻. Thus, FLi₂ superalkali is also capable of double-electron reduction of CO_2 . These findings should provide new insights into CO_2 -activation as well as motivate further research in this direction.

KEYWORDS

ab initio calculations, CO2-activation, CO2-reduction, electronic properties, superalkalis

1 | INTRODUCTION

Carbon dioxide (CO₂), a strong covalently bonded molecule, is a major contributor to global warming. The conversion of CO₂ to fuels is a crucial step that can positively impact the global carbon balance.^[1,2] The major challenge in the recycling of CO₂ into usable fuels is that CO₂ is an extremely stable molecule. To convert CO₂ into fuel, it should be first activated or chemically reduced by some catalysts. Although CO₂ can be reduced either electrochemically in which CO₂ is reduced to CO using electrical energy (such as zinc cathode) or photoelectrochemically in which CO₂ is reduced to CO by incident light. Single-electron reduction of CO₂ to CO₂⁻ is, however, not feasible experimentally due to large reorganization energy between linear CO₂ molecule and bent CO₂⁻ anion. Note that the electron affinity of CO₂ is negative, which suggests that CO₂⁻ is metastable. However, CO₂⁻ anion can be generated through certain mass spectrometric experiments as suggested by Schröder et al.^[3] They noticed that CO₂⁻ anion, which can be regarded as an activated carbon dioxide unit, in which the C–O bonds are weakened, is more stable in the ²A₁ state. The potential energy surface (PES) of the CO₂⁻ anion, explored by Sommerfeld et al.,^[4] has identified three vibronically coupled bound states.

It is not even easy to extract an electron from CO_2 due to its high ionization energy of 13 eV. It has been reported only recently^[5] that the oxidation of CO_2 can be possible by using superhalogens. Superhalogens^[6] are species whose electron affinity exceeds to those of halogen. The counterparts of superhalogens are superalkalis,^[7] which possess lower ionization energy than alkali metals. Superalkalis have been previously employed in the design of supersalts,^[8–11] superbases,^[12–15] alkalides,^[16–18] and so forth. It is, therefore, instructive to observe whether superalkalis can be employed to transfer an electron to CO_2 . Recently, the capability of reducing CO_2 by novel superalkalis is proposed by Zhao et al.^[19] and subsequently, reported by Park and Meloni.^[20] This prompted us to perform a systematic study on the interaction of CO_2 with typical superalkalis, known for decades. We noticed that superalkalis can indeed be used to reduce CO_2 into CO_2^- anion. In addition, we have also shown that FLi₂ superalkali is also capable to reduce CO_2 to CO_2^{2-} anion as well. A thorough understanding of the chemical processes involved in the reduction of carbon

^{2 of 6} WILEY QUANTUM-HEMISTRY

dioxide (CO_2) is of immense importance in biological, environmental, and industrial processes.^[21] As mentioned earlier, the CO_2^- anion is bent, unlike the linear structure of a neutral CO_2 molecule. Therefore, the reduction of CO_2 into CO_2^- results in a change in molecular geometry, which generally requires chemical processes such as electrochemical reduction or photochemical reduction. The present study suggests a simple and catalyst-free method of single-electron reduction of CO_2 . This should lead to an efficient approach to control and convert CO_2 , which is required for environmental safety. We, therefore, believe that this work should appeal to researchers involved in multidisciplinary sciences and working on the interface of physics, chemistry, and environmental sciences.

2 | COMPUTATIONAL DETAILS

All computations were performed using the second order Møller–Plesset perturbative (MP2) method^[22] and 6-311 + G(d) basis set in Gaussian 09 program.^[23] The total electronic energy and geometry have been obtained without any symmetry constraints in the potential energy surface. The vibrational analysis has been performed at the same level of theory to ensure that all frequency values are positive, that is, the structures belong to true minima in the potential energy surface. This computational scheme has already been adopted in the previous work of Zhao et al.^[19]

To verify the reliability of our computational scheme, we have compared our computed results on CO_2^- with those of available experimental as well as literature values. For instance, our computed bond length and symmetric stretching frequency of CO_2 1.170 Å and 1335 cm⁻¹ agree well with corresponding experimental values 1.160 Å^[24] and 1333 cm^{-1,[25]} respectively. Furthermore, our computed bond length of CO_2^- 1.237 Å approximates the experimental value 1.25 Å^[26] better than the high-level CCSD(T) computed value of 1.230 Å^[27]. The calculated bond angle of CO_2^- (137°) is in the vicinity of 130° as reported earlier by Raman spectroscopy.^[28] Moreover, the computed bond length of LiO and binding energy per atom, 1.715 Å and 3.12 eV, are comparable to experimental bond length 1.688 Å^[24] and bond dissociation enthalpy of 3.53 eV (340.5 kJ/mol)^[29] of LiO, respectively, measured by spectroscopic methods. This may advocate the validity of our computational scheme as well as the reliability of the results reported herein. Although our computed adiabatic electron affinity of CO₂ is -1.04 eV, which overestimates the magnitude of the experimental value (-0.60 eV) reported by Compton et al.^[30] and Knapp et al.^[31] Similarly, our computed ionization energy of CO₂ 14.32 eV slightly overestimates the ionization energy determination is not our objective.

3 | RESULTS AND DISCUSSION

We have studied the interaction of CO₂ molecule with typical superalkali species such as FLi₂, OLi₃, and NLi₄. The ionization energies of these species are calculated to be 3.85 eV for FLi₂, 3.46 eV for OLi₃, and 3.23 eV for NLi₄, which are smaller than that of Li (~5 eV). The equilibrium structures of superalkali-CO₂ complexes are displayed in Figure 1 along with CO₂⁻ anion and superalkali cations. The relative energy (ΔE) of superalkali-CO₂ complexes and their isomers are collected in Table 1. In all superalkali-CO₂ complexes, the lowest energy structures are those in which both O atoms of CO₂ interacts with two Li atoms of superalkalis. The bond lengths of Li—O interaction lie between 1.865 Å and 1.892 Å. The low lying isomers of FLi₂–CO₂ and OLi₃–CO₂ are 1.07 eV and 0.40 eV higher in energy in which CO₂ interacts via single O atom as shown in Figure 1. In case of NLi₄—CO₂, there is no competiting isomer obtained in our calculations. In all superalkali-CO₂ complexes, CO₂ moiety becomes bent by an angle 133° and the bond lengths C—O become 1.246 Å. These values are comparable to the bond lengths of 1.237 Å and bond angle of 137° in the CO₂⁻ anion. This suggests that CO₂ can be activated by interaction with superalkalis.

The binding energy (BE) of superalkali-CO₂ complexes are calculated by using following equations;

$$BE = E[CO_2] + E[superalkali] - E[superalkali - CO_2]$$

where *E*[.] represents total (electronic + zero-point) energy of respective species. The BEs of superalkali- CO_2 complexes are listed in Table 1. The basis set superposition error (BSSE) is not included as it hardly affects our BEs due to sufficiently large size of the basis set. One can note that BE > 0 and, therefore, all superalkali- CO_2 complexes are energetically stable against dissociation to CO_2 . Since the interaction of CO_2 with superal-kalis takes place via Li atoms, we have compared the BE values of superalkali- CO_2 complexes with that of LiO molecule, which is computed as 6.24 eV. This may provide some insights into the relative strength of interaction of CO_2 with superalkalis. Although our computed BEs of superalkali- CO_2 complexes are much smaller than that of LiO molecule, these values are comparable to or larger than the BE of Li₃F₂– CO_2 , which is calculated to be in the range 1.10–1.69 eV (106–163 kJ/mol) by Park and Meloni.^[20]

Furthermore, the BE of superalkali-CO₂ complexes decreases, $BE(FLi_2-CO_2) > BE(OLi_3-CO_2) > BE(NLi_4-CO_2)$, with the increase in the size of superalkalis ($FLi_2 < OLi_3 < NLi_4$). Thus, the interaction between superalkali and CO_2 becomes slightly weaker with the increase in the size of superalkalis. This can be expected due to the fact that larger superalkalis usually possess more delocalized electron cloud.^[9] Therefore, charge transfer from larger superalkali such as NLi_4 is not as much effective as in case of smaller superalkali such as FLi_2 .

To elucidate CO₂ reduction, we have computed natural bonding orbital (NBO) charges (Δq) and spin density ($\Delta \rho_s$) located on CO₂ as listed in Table 1. In the lowest energy structures of superalkali-CO₂ complexes, the Δq takes a value of -0.90e for FLi₂, -0.88e for OLi₃, and -0.85e for NLi₄. These Δq values follow the same trend as those of BE values as expected due to the fact that lower Δq value results in the decrease in the

FIGURE 1 Equilibrium structures of superalkali-CO₂ complexes with bond lengths in Å. Equilibrium structures of CO_2^- anion, FLi_2^+ , OL_3^+ , NL_4^+ superalkali cations are also displayed

strength of charge-transfer interaction. The Δq values have been found to be -1.26e for Al₃--CO₂, -0.91e for B₉C₃H₁₂--CO₂, and -0.63e for C₅NH₆ for previously reported complexes by Jena and coworkers.^[19] Similarily, the Δq value reported for the most stable structure of F₂Li₃--CO₂ is -0.78e,^[20] which is smaller than the Δq values presented here. Therefore, the charge transfer from these superalkalis is more effective than that from F₂Li₃ superalkali. In isomer (b) of FLi₂--CO₂, Δq takes very small magnitude (-0.17*e*), which is consistent with almost linear CO₂ moiety just as in neutral CO₂ molecule. On the contrary, the Δq in isomer (b) of OLi₃--CO₂ is, albeit smaller than that in its lowest energy structure (a), large enough to bend CO₂ moiety (see Figure 1). The electron transfer from superalkali to CO₂ in superalkali-CO₂ complexes can also be confirmed by the analysis of the spin density ($\Delta \rho_s$) value. One can note that in the lowest energy structure of all complexes, the $\Delta \rho_s$ becomes 0.96 a.u., which is very close to unity. Thus, the whole spin density (of the unpaired electron) is localized on the CO₂ moiety such that its ground electronic state becomes doublet. In case of FLi₂--CO₂ isomer (b), however, $\Delta \rho_s$ is negligibly small suggesting that the unpaired spin density is localized almost entirely on the FLi₂ superalkali. One may, therefore, assume that the CO₂ moiety exists in its neutral singlet state whereas the FLi₂ superalkali takes its open-shell cationic form.

The singly occupied molecular orbitals (SOMOs) and spin density surfaces are plotted in Figure 2. The SOMOs of FLi_2 — CO_2 and OLi_3 — CO_2 complexes are localized on CO_2 moiety, which clearly indicates the electron transfer from FLi_2 and OLi_3 superalkali moieties, respectively. In case of NLi_4 — CO_2 complex, on the contrary, the SOMO is localized on N atom of NLi_4 superalkali moiety. Although there is indeed an electron transfer from NLi_4 to CO_2 , the localization of SOMO is due to the lone pair of nitrogen. This fact is further confirmed by spin density surfaces, which suggest that the spin density is localized on CO_2 moiety due to the unpaired electron for all superalkali- CO_2 complexes studied here. The SOMO eigenvalues of superalkali- CO_2 complexes are also listed in Table 1. One can note that the SOMO energies are fairly large, which suggest that the unpaired electron is strongly bound. However, these SOMO energy values decrease with the increase in the size of the superalkalis, following the same trend as those of the charge transfer and binding energies discussed earlier.

TABLE 1	The MP2/6-311 + G(d) calculated relative energy (ΔE), binding energy (BE), charge transferred to CO ₂ (Δq), spin density located at
CO ₂ (Δρ _s),	and SOMO-energy (E _{SOMO}) of superalkali-CO ₂ complexes

Systems	Isomer	Δ <i>E</i> (eV)	BE (eV)	Δq (e)	Δρ _s (a.u.)	E _{SOMO} (eV)
FLi ₂ —CO ₂	(a)	0	2.41	-0.90	0.96	-9.74
	(b)	1.07	1.34	-0.17	0.08	-4.35
OLi ₃ -CO ₂	(a)	0	1.23	-0.88	0.96	-8.91
	(b)	0.40	0.83	-0.82	0.89	-8.58
NLi ₄ —CO ₂			1.17	-0.85	0.96	-6.57

FIGURE 2 The singly occupied molecular orbitals (isovalue = 0.02 a.u.) and spin density surfaces (isovalue = 0.002 a.u.) of superalkali-CO₂ complexes

Thus, superalkalis are indeed capable in the single-electron reduction of CO_2 . It should, however, be noticed that the size of superalkalis is more effective than their ionization energy in CO_2 activation. For example, the size of superalkalis considered is in the order, $FLi_2 < OLi_3 < NLi_4$ whereas their ionization energies follow a reverse order, $FLi_2 > OLi_3 > NLi_4$. Our calculated binding energy, charge transfer and SOMO energies of superal-kali- CO_2 complexes have suggested that FLi_2 is more effective for CO_2 -reduction than NLi_4 . Recently, in a combined experimental and theoretical study of $(M-CO_2)^-$ anionic complexes (M = Cu, Ag, Au), Zhang et al.^[33] noticed that the size of transition metal indeed plays an important role in the charge transfer as CO_2 is found to be bent by 139° for M = Cu but remained almost linear for M = Au. A similar trend has also been observed by Zhao et al.^[19] in case of some novel superalkalis.

We have also analyzed the anionic complex of superalkali-CO₂. Note that all superalkali-CO₂ complexes are open shell systems and hence, they are difficult to be introduced in the reaction field. On the contrary, anions of superalkali-CO₂ complexes such as (FLi₂--CO₂)⁻, (OLi₃--CO₂)⁻, (NLi₄--CO₂)⁻ being closed-shell species, can be feasible from the experimental point of view. We obtained three low-lying isomers of (FLi₂--CO₂)⁻ as well as (OLi₃--CO₂)⁻ and two isomers of (NLi₄--CO₂)⁻ anionic complex as displayed in Figure 3. The relative energies (ΔE), binding energy (BE) and charge transfer (Δq) to CO₂ in these isomers are listed in Table 2. The BEs are calculated by considering the excess electron on superalkalis. In all cases, CO₂ assumes a bent structure, except for the higher energy isomer (c) of (OLi₃--CO₂)⁻. The bond angle of CO₂ is significantly reduced in case of (FLi₂--CO₂)⁻, being 122° in (a), 113° in (b), and 111° in (c). This angle remains 137°-130° and 136°-121° in (OLi₃--CO₂)⁻ and (NLi₄--CO₂)⁻, respectively. The BEs of anionic complexes follow the same trend as those of neutral ones, although their values are relatively small (see Table 1). It is evident from Table 2 that the charge transfer (Δq) to CO₂ in the lowest energy structures of (OLi₃--CO₂)⁻ and (NLi₄--CO₂)⁻ is -0.90e and -0.83e, respectively, which is close to unity. More interestingly, the Δq of (FLi₂--CO₂)⁻ isomers increases to -1.57e in (a), -1.90e in (b), and -1.76e in isomer (c), becoming very close of 2e in magnitude. Thus, CO₂ can be reduced to CO₂⁻, when an electron is added to FLi₂--CO₂ complex. Due to smaller size, FLi₂ superalkali is not only capable to reduce CO₂ more effectively to CO₂⁻ (single-electron reduction) but also CO₂⁻ (doubleelectron reduction).

FIGURE 3 Equilibrium structures of superalkali-CO₂ complex anions with bond lengths in Å. Their relative energies are listed in Table 2

TABLE 2 The MP2/6-311 + G(d) calculated relative energy (ΔE), binding energy (BE), and charge transferred to CO₂ (Δq) of superalkali-CO₂ complex anions

Anions	Isomer	Δ Ε (eV)	BE (eV)	Δq (e)
(FLi ₂ —CO ₂) ⁻	(a)	0	1.24	-1.57
	(b)	0.01	1.23	-1.92
	(c)	0.07	1.17	-1.73
(OLi ₃ —CO ₂)⁻	(a)	0	1.04	-0.90
	(b)	0.31	0.73	-0.82
	(c)	0.83	0.21	-0.01
(NLi₄—CO₂)⁻	(a)	0	0.85	-0.83
	(b)	0.71	0.14	-1.48

4 | CONCLUSIONS

Using MP2/6-311 + G(d) calculations, we have studied the interaction of CO₂ by superalkalis such as FLi₂, OLi₃, and NLi₄. We have obtained their lowest energy structures along with possible isomers and calculated various parameters such as binding energy, charge transfer, and spin density. The singly occupied molecular orbitals and spin density surfaces have been also explored. The resulting superalkali-CO₂ complexes are found to be stable in which an electron transfer takes place from superalkali to CO₂ moieties. This unpaired electron is entirely located on the CO₂ moiety, bending it by 133°. Thus, CO₂ can be activated by using superalkalis. Although all superalkalis studied here are capable to reduce CO₂ into CO₂⁻ anion, the single-electron reduction is more effective in case of smaller superalkali such as FLi₂. It has been also noticed that CO₂⁻ in the FLi₂—CO₂ complex can be further reduced to $CO_2^{2^-}$ by addition of an extra electron. This study should address one of the fundamental problems in the conversion of CO₂ into fuels.

ACKNOWLEDGMENT

A. K. Srivastava acknowledges Prof. N. Misra (University of Lucknow), Prof. S. N. Tiwari (D. D. U. Gorakhpur University), and Dr. B. N. Rai (Veer Kunwar Singh University) for providing necessary support and facilities.

ORCID

Ambrish Kumar Srivastava D http://orcid.org/0000-0001-8340-856X

REFERENCES

- [1] G. Centi, S. Perathoner, Catal. Today 2009, 148, 191.
- [2] J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev.2014, 43, 631.
- [3] D. Schröder, C. A. Schalley, J. N. Harvey, H. Schwarz, Int. J. Mass Spectrom. 1999, 185/186/187, 25.
- [4] T. Sommerfeld, H.-D. Meyer, L. S. Cederbaum, Phys. Chem. Chem. Phys. 2004, 6, 42.
- [5] M. Czapla, P. Skurski, Phys. Chem. Chem. Phys. 2017, 19, 5435.
- [6] G. L. Gutsev, A. I. Boldyrev, Chem. Phys. 1981, 56, 277.
- [7] G. L. Gutsev, A. I. Boldyrev, Chem. Phys. Lett. 1982, 92, 262.
- [8] Y. Li, D. Wu, Z.-R. Li, Inorg. Chem. 2008, 47, 9773.
- [9] H. Yang, Y. Li, D. Wu, Z.-R. Li, Int. J. Quantum Chem. 2012, 112, 770.
- [10] A. K. Srivastava, N. Misra, Mol. Phys. 2014, 112, 2621.
- [11] Y.-Q. Jing, Z.-R. Li, D. Wu, Y. Li, B.-Q. Wang, F. L. Gu, Y. Aoki, ChemPhysChem 2006, 7, 1759.
- [12] A. K. Srivastava, N. Misra, New J. Chem. 2015, 39, 6787.
- [13] A. K. Srivastava, N. Misra, RSC Adv. 2015, 5, 74206.
- [14] A. K. Srivastava, N. Misra, Chem. Phys. Lett. 2016, 648, 152.
- [15] A. K. Srivastava, N. Misra, Chem. Phys. Lett. 2016, 644, 1.
- [16] W. Chen, Z.-R.Li, D. Wu, Y. Li, C.-C. Sun, J. Phys. Chem. A 2005, 109, 2920.
- [17] A. K. Srivastava, N. Misra, Chem. Phys. Lett. 2015, 639, 307.
- [18] A. K. Srivastava, N. Misra, Int. J. Quantum Chem. 2017, 117, 208.
- [19] T. Zhao, Q. Wang, P. Jena, Nanoscale 2017, 9, 4891.

6 of 6 WILEY CHEMISTRY

- [20] H. Park, G. Meloni, Dalton Trans. 2017, 6, 11942.
- [21] J. M. Weber, Int. Rev. Phys. Chem. 2014, 33, 489.
- [22] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
- [23] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 09, Revision C02*, Gaussian, Inc., Wallingford, CT **2009**.
- [24] M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H.Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Lafferty, A. G. Maki, J. Phys. Chem. Ref. Data 1979, 8, 619.
- [25] T. Shimanouchi, J. Phys. Chem. Ref. Data 1977, 6, 993.
- [26] K. O. Hartman, I. C. Hisatsune, J. Chem. Phys. 1966, 44, 1913.
- [27] G. L. Gutsev, R. J. Bartlett, R. N. Compton, J. Chem. Phys. 1998, 108, 6756.
- [28] I. Janik, G. N. R. Tripathi, J. Chem. Phys. 2016, 144, 154307.
- [29] Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL 2007.
- [30] R. N. Compton, P. W. Reinhardt, C. D. Cooper, J. Chem. Phys. 1975, 63, 3821.
- [31] A. Knapp, O. Echt, D. Kreisle, T. D. Mark, E. Recknagel, Chem. Phys. Lett. 1986, 126, 225.
- [32] L. Wang, J. E. Reutt, Y. T. Lee, D. A. Shirley, J. Electron Spectrosc. Relat. Phenom. 1988, 47, 167.
- [33] X. Zhang, E. Lim, S. K. Kim, K. H. Bowen, J. Chem. Phys. 2015, 143, 174305.

How to cite this article: Srivastava AK. Single- and double-electron reductions of CO₂ by using superalkalis: An ab initio study. Int J Quantum Chem. 2018;e25598. https://doi.org/10.1002/qua.25598